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Information processing,1 storing,2 and gathering3 are important
functions of molecular devices and machines.4 In particular,
chemical computation by molecular devices is an ultimate challenge
of future technology. Although a semiconductor feature can be
downsized to 65 nm,5 it will be difficult to approach the molecular
size. In molecular computation, fluorescent logic gates1 play pivotal
roles because they are detectable as a single molecule6 and can
simultaneously handle multiple inputs.7 Here, we show for the first
time that a designed fluorescent logic gate can operate in a small
nanospace. The AND logic gate18 (Figure 1) is restricted to a
tetramethylammonium dodecyl sulfate9 (TMADS, Figure 1) micelle
and gives fluorescence as an output only when both H+ and Na+

ions exist nearby. The volume needed for this operation has a radius
of ∼3 nm,10 which is much smaller than that of a molecular
electronic-based logic device (dimensions) 100µm × 100µm ×
100 nm11). From a biological viewpoint, this system mimics a cell
membrane where both ions are handled by a two-input logic device,
Na+/H+ antiporter.12 Biology has many examples of simple
computation in membrane-bound nanospaces.

The logic gate1 consists of the following components. (i) The
anthracene (blue part) is a fluorophore. (ii) The trialkylamino and
benzo-15-crown-5 moieties (green) are selective H+ and Na+

receptors, respectively. Moreover, their interaction with ions allows
the fluorescence switching by controlling the photoinduced electron
transfer (PET) processes3a from the receptors to the fluorophore.7a

A strong fluorescence signal can be observed only when both
receptors catch the correct ions. (iii) Short methylene spacers (red)
are suitable for the efficient fluorescence switching.13 (iv) Due to
the long alkyl chain (orange), this logic gate is anchored in micelles
and away from the bulk water.

Then, we demonstrate the AND logic operation with1 in
TMADS micelles. The radius of a TMADS micelle from the center
to the edge of a tetramethylammonium ion cloud has been estimated
to be∼3 nm.10 This nanospace associated with TMADS aqueous
solution is the domain of1. Figure 2 shows the fluorescence
characteristics of1 in TMADS aqueous solution under four different
conditions (I-IV),14 in which H+ concentration (input1) is 10-11

M (low, binary 0) or 10-3 M (high, 1) and Na+ concentration
(input2) is 0 M (low, 0) or 4× 10-1 M (high, 1). As shown in
Figure 2, a strong fluorescence signal is observed (output) 1)
only when both ion concentrations are kept high, that is, (input1,
input2) ) (1, 1). In contrast, the fluorescence signal is very weak
(output ) 0) in the other cases. The fluorescence quantum yield
(Φf) at output) 1 is over 7-times higher than that at output) 0.

To remove the possibility that nonspecific salt-induced environ-
mental change of the micelles resulted in the fluorescence “off-
on” switching of1 under sufficient H+ ion (IIfIV), the Φf-pNa
diagrams for1 and a control compound216 are obtained (Figure

3). Since2 bears a dimethoxybenzene moiety, which cannot bind
Na+ ion, the PET process occurs from the dimethoxybenzene moiety
to the fluorophore regardless of the Na+ concentration. If the salt-
induced environmental change of the micelles caused the increase
in theΦf of 1, similar fluorescence enhancement should be seen in
theΦf-pNa diagrams for2 in Figure 3, as well. Nevertheless, such
enhancement is not observed, and theΦf value of2 is kept low by
the PET process.

For the AND logic operation with1 shown in Figure 2, the
appropriate micelle (i.e., TMADS) is necessary. This is the key
evidence that1 is operating in the micelle-bounded nanospace.
Other micelles, such as Triton X-100, octylâ-D-glucopyranoside
(OG), and cetyltrimethylammonium chloride (CTAC), do not
display a distinct AND logic operation because these micelles
cannot afford a large fluorescence enhancement with increasing
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Figure 1. Structures of AND logic gate1 and TMADS. In 1, if H+ is
absent, the PET process from the trialkylamino moiety to the fluorophore
is involved in nonradiative relaxation pathways of the excited anthracene,
resulting in weak fluorescence. Even when H+ is present, another PET
occurs from the benzocrown moiety to the fluorophore, which can be
suppressed by Na+ addition. Therefore, strong fluorescence can be observed
from 1 only when H+ and Na+ are available.

Figure 2. AND logic operation in a small nanospace. Fluorescence spectra
and truth table of1 (5 µM) with TMADS (20 mM15) in water at four
different conditions. All concentrations are bulk values. Excitation) 378
nm.
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Na+ concentration, as shown in Figure 3. The logâNa+ value18 for
1 and Na+ (i.e., logarithm of the binding constant) in TMADS
micelles is∼1.9, whereas the estimated logâNa+ values in Triton
X-100, OG, and CTAC micelles and bulk water19 are less than 0.5.
These values indicate that Na+ ion is more available for1, which
is restricted to the TMADS micelle, than in the other micelles and
even in bulk water. Na+ ion is electrostatically concentrated near
the surface of anionic TMADS micelles, while this effect cannot
be expected for the other neutral and cationic micelles. The
hydrophilic benzocrown moiety of1 is located near the headgroup
of TMADS and, therefore, binds concentrated Na+ ions. Such an
amplifying effect of ionic micelles on the local ion concentration
has been observed,20 only for the specific case of H+ amplification
by anionic micelles, which results in the positive shift in pKa values.
In this study, the pKa value (8.6) for1 and H+ in the TMADS
micelles under sufficient Na+ ion is higher than that in the other
neutral and cationic micelles (5.5, 5.6, and 5.5 in Triton X-100,
OG, and CTAC, respectively), though similar to that (9.0-9.221)
in bulk water. The TMADS-induced pKa shift in comparison with
water is less than the corresponding logâNa+ shift because the
position of the H+ and Na+ receptors are different in the steeply
varying fields of dielectric, electric, and specific effects in this small
membrane-bounded nanospace.

In summary,1 works as an AND logic gate with H+ and Na+

ions within TMADS micelles with the radius of∼3 nm. This is
the first report of a simple molecular computation with plural inputs
in a small nanospace. This strategy should be easily generalizable
to all the other types of molecular computation in the literature.1,7
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Figure 3. Fluorescence quantum yield (Φf) - Na+ concentration (pNa)
diagrams in different micelle systems. The bulk H+ concentration is
sufficient (pH ) 3) to suppress one PET process from the trialkylamino
moiety. Concentrations of TMADS, Triton X-100, OG, and CTAC are 20,
0.52, 34, and 5.0 mM, respectively.15,17
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